

National Qualifications 2023

## 2023 Mathematics

#### Paper 1 - (Non-calculator)

### National 5

#### **Finalised Marking Instructions**

© Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permissions@sqa.org.uk.



#### Marking Instructions for each question

| Q                                                                     | uestic                                                                                                                                                    | n                           | Generic scheme                                                                                   | Illustrative scheme                               | 9         | Max<br>mark |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|-------------|--|
| 1.                                                                    |                                                                                                                                                           |                             | <ul> <li><sup>1</sup> convert to improper fraction and<br/>multiply by the reciprocal</li> </ul> | $\bullet^1  \frac{13}{6} \times \frac{9}{8}$      |           | 2           |  |
|                                                                       |                                                                                                                                                           |                             | • <sup>2</sup> consistent answer                                                                 | • <sup>2</sup> $\frac{39}{16}$ or $2\frac{7}{16}$ |           |             |  |
| Note                                                                  | s:                                                                                                                                                        |                             | I                                                                                                |                                                   |           |             |  |
| 1. Co                                                                 | orrect                                                                                                                                                    | answ                        | er without working                                                                               | awa                                               | rd 0/2    |             |  |
| 2. Fi                                                                 | nal an                                                                                                                                                    | swer                        | must be in simplest form, eg $\frac{13}{6} \times \frac{9}{8} = \frac{1}{4}$                     | 17<br>48 awa                                      | rd 1/2 √√ | 2           |  |
| 3. • <sup>2</sup>                                                     | is onl                                                                                                                                                    | y avai                      | ilable where simplifying is required.                                                            |                                                   |           |             |  |
| 4. Do                                                                 | o not p                                                                                                                                                   | penali                      | se incorrect conversion of $\frac{39}{16}$ to a mixe                                             | ed number.                                        |           |             |  |
| Com                                                                   | monly                                                                                                                                                     | 0bse                        | erved Responses:                                                                                 |                                                   |           |             |  |
| 1. $\frac{1}{6}$                                                      | $\frac{3}{5} \times \frac{8}{9} =$                                                                                                                        | = <mark>52</mark><br>27     |                                                                                                  | awa                                               | rd 1/2 ×√ | 1           |  |
| 2. $\frac{1}{1}$                                                      | $\frac{5}{3} \times \frac{8}{9} =$                                                                                                                        | = <mark>16</mark><br>39     |                                                                                                  | awa                                               | rd 1/2 ×√ | 1           |  |
| 3. (a                                                                 | $)\frac{13}{6}\times$                                                                                                                                     | $\frac{9}{8} \rightarrow$   | $\frac{6}{13} \times \frac{9}{8} = \frac{27}{52}$                                                | awa                                               | rd 1/2 √× |             |  |
| (b                                                                    | $)\frac{6}{13}$                                                                                                                                           | $\frac{9}{8} = \frac{2}{5}$ | <u>7</u><br>2                                                                                    | awa                                               | rd 1/2 ×√ | 1           |  |
| 4. 2                                                                  | $\frac{1}{6} \times \frac{9}{8}$                                                                                                                          | $\rightarrow 2\frac{1}{2}$  | $\times \frac{3}{8} \rightarrow 2\frac{3}{16}$                                                   | awa                                               | rd 0/2    |             |  |
| 2.                                                                    |                                                                                                                                                           |                             | • <sup>1</sup> start expansion                                                                   | • $x^2$ + 7x + 7x + 49 or $6x^2$ - 6              | 0         | 3           |  |
|                                                                       |                                                                                                                                                           |                             | • <sup>2</sup> complete expansion                                                                | $e^{2} x^{2} + 7x + 7x + 49 + 6x^{2} - 60$        | )         |             |  |
|                                                                       |                                                                                                                                                           |                             | • <sup>3</sup> collect like terms (see Note 2)                                                   | $\bullet^3 7x^2 + 14x - 11$                       |           |             |  |
| Note                                                                  | s:                                                                                                                                                        |                             |                                                                                                  |                                                   |           |             |  |
| 1. Co                                                                 | orrect                                                                                                                                                    | answ                        | er without working                                                                               | awa                                               | rd 3/3    |             |  |
| 2. Fo<br>te                                                           | 2. For the award of $\bullet^3$ , the evidence at $\bullet^2$ must include an $x^2$ term. At least one negative term must be collected with another term. |                             |                                                                                                  |                                                   |           |             |  |
| 3. For subsequent incorrect working, the final mark is not available. |                                                                                                                                                           |                             |                                                                                                  |                                                   |           |             |  |
| Com                                                                   | monly                                                                                                                                                     | 0bse                        | erved Responses:                                                                                 |                                                   |           |             |  |
| 1. <i>x</i> <sup>2</sup>                                              | + 49 +                                                                                                                                                    | <b>- 6</b> x <sup>2</sup> - | $-60 = 7x^2 - 11$                                                                                | awa                                               | rd 2/3 √× | √1          |  |

| Question             |                                                                                               | n                   | Generic scheme                                                           | Illustrative scheme                      | Max<br>mark    |  |
|----------------------|-----------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------|------------------------------------------|----------------|--|
| 3.                   |                                                                                               |                     | • <sup>1</sup> correct scaling                                           | 10x + 15y = 40                           | 3              |  |
|                      |                                                                                               |                     |                                                                          | 10x + 4y = -4                            |                |  |
|                      |                                                                                               |                     |                                                                          | OR $4x + 6y = 16$<br>15x + 6y = -6       |                |  |
|                      |                                                                                               |                     | • <sup>2</sup> value for one variable                                    | • <sup>2</sup> $x = -2$ or $y = 4$       |                |  |
|                      |                                                                                               |                     | • <sup>3</sup> value for other variable                                  | • <sup>3</sup> $y = 4$ or $x = -2$       |                |  |
| Note                 | s:                                                                                            |                     |                                                                          |                                          |                |  |
| 1. Co                | orrect                                                                                        | answe               | ers without working                                                      | award 0/3                                |                |  |
| 2. Ar                | swers                                                                                         | obta                | ined by repeated substitution                                            | award 0/3                                |                |  |
| 3. Fo                | ollowir                                                                                       | ng an o             | earlier error, accept rounded answers §                                  | given to at least 1 decimal place.       |                |  |
| Com                  | monly                                                                                         | 0bse                | erved Responses:                                                         |                                          |                |  |
|                      |                                                                                               | <i>(</i> <b>1</b> ) |                                                                          | 1 -                                      |                |  |
| 4.                   | (a)                                                                                           | (1)                 | • ' state value of a                                                     | • '-3                                    | 1              |  |
|                      |                                                                                               | (ii)                | • <sup>2</sup> state value of $b$                                        | • <sup>2</sup> 2                         | 1              |  |
| Note<br>1. V         | <b>s:</b><br>Vhere<br>or a fi                                                                 | the va<br>nal ar    | alues of a and b are not stated explicit<br>iswer of $y = (x - 3)^2 + 2$ | y,<br>award 1/1 for (i) and 1/1 for (ii) |                |  |
| 2. F                 | or an                                                                                         | answe               | er of $a = 2, b = -3$                                                    | award 0/1 mark for (i) and 1/1 for (     | <u>ii) ×√1</u> |  |
| 1. y                 | =(x -                                                                                         | $(-3)^2 +$          | $-2 \rightarrow a = 3, b = 2$                                            | award 0/1 mark for (i) and 1/1 for (     | (ii) ×√1       |  |
| <b>2</b> . <i>y</i>  | =(x+                                                                                          | - 3) <sup>2</sup> + | $2 \rightarrow a = -3, b = 2$                                            | award 1/1 mark for (i) and 1/1 for (     | ii)            |  |
|                      | (b)                                                                                           |                     | • <sup>3</sup> find value of $c$                                         | • <sup>3</sup> 11                        | 1              |  |
| Note<br>1. A<br>2. A | Notes:<br>1. Answer must be consistent with answers to (a).<br>2. Accept (0,11) or $y = 11$ . |                     |                                                                          |                                          |                |  |
| Com                  | monly                                                                                         | 0bse                | erved Responses:                                                         |                                          |                |  |
|                      |                                                                                               |                     |                                                                          |                                          |                |  |

| Question                                                                                                                                                                                                                       |                                                                                    | on     | Generic scheme                                    | Illustrative scheme                        | Max<br>mark |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------|---------------------------------------------------|--------------------------------------------|-------------|--|
| 5.                                                                                                                                                                                                                             |                                                                                    |        | • <sup>1</sup> calculate discriminant             | • <sup>1</sup> 52                          | 2           |  |
|                                                                                                                                                                                                                                |                                                                                    |        | • <sup>2</sup> state nature of roots              | • <sup>2</sup> 2 real (and) distinct roots |             |  |
| Note                                                                                                                                                                                                                           | s:                                                                                 |        |                                                   |                                            |             |  |
| 1. Co                                                                                                                                                                                                                          | orrect                                                                             | answ   | er without working                                | award 0/2                                  |             |  |
| 2. Fc                                                                                                                                                                                                                          | or 36-                                                                             | -(-16  | $)>0$ or $36+16>0 \rightarrow 2$ real (and) disti | nct roots award 2/2                        |             |  |
| 3. Fo                                                                                                                                                                                                                          | or the                                                                             | awaro  | d of $\bullet^2$ accept "2 real unequal roots".   |                                            |             |  |
| 4. Do                                                                                                                                                                                                                          | o not a                                                                            | accept | t "2 real roots" or "2 distinct roots" or         | "real and distinct roots".                 |             |  |
| <ul> <li>5. Expected answers for the award of •<sup>2</sup>, when</li> <li>(a) b<sup>2</sup> - 4ac &lt; 0 : "no real roots".</li> <li>(b) b<sup>2</sup> - 4ac = 0 : "1 repeated real root" or "2 equal real roots".</li> </ul> |                                                                                    |        |                                                   |                                            |             |  |
| 6. A                                                                                                                                                                                                                           | 6. Accept $\sqrt{52}$ as evidence for $\bullet^1$ in a quadratic formula or alone. |        |                                                   |                                            |             |  |
| Commonly Observed Responses:                                                                                                                                                                                                   |                                                                                    |        |                                                   |                                            |             |  |

| Questio                               | n                                                                                                      | Generic scheme                                                                                  | Illustrative scheme                                               | Max<br>mark  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------|--|--|--|
| 6.                                    |                                                                                                        | • <sup>1</sup> correct substitution into cosine rule                                            | • $^{1}$ $6^{2} + 5^{2} - 2 \times 6 \times 5 \times \frac{1}{5}$ | 3            |  |  |  |
|                                       |                                                                                                        | •² calculate AB²                                                                                | • <sup>2</sup> 49                                                 |              |  |  |  |
|                                       |                                                                                                        | • <sup>3</sup> calculate AB                                                                     | • 3 7                                                             |              |  |  |  |
| Notes:                                |                                                                                                        |                                                                                                 |                                                                   |              |  |  |  |
| 1. Correct                            | answ                                                                                                   | er without working                                                                              | award 0/3                                                         |              |  |  |  |
| 2. (a) 6 <sup>2</sup> +               | ⊦5 <sup>2</sup> –                                                                                      | $2 \times 6 \times 5 \times \frac{1}{5} = 61 - 60 \times \frac{1}{5} = 49 \rightarrow$          | .7                                                                |              |  |  |  |
| whe                                   | ere co                                                                                                 | s is scored out in <b>each line</b> of working                                                  | award 3/3                                                         |              |  |  |  |
| (b) For                               | 6 <sup>2</sup> +                                                                                       | $5^2 - 2 \times 6 \times 5 \times \cos \frac{1}{5} = 49 \rightarrow 7$                          | award 2/3 ×√                                                      | $\checkmark$ |  |  |  |
| 3. For the a                          | awaro                                                                                                  | d of •1 accept eg $\frac{1}{5} = \frac{6^2 + 5^2 - AB^2}{2 \times 6 \times 5}$                  |                                                                   |              |  |  |  |
| 4. • <sup>3</sup> is only<br>(a) calc | y ava<br>Julatii                                                                                       | ilable where AB <sup>2</sup> has been obtained from<br>ng the square root of a perfect square ( | m a cosine rule calculation by:<br>>4)                            |              |  |  |  |
| OR                                    |                                                                                                        |                                                                                                 |                                                                   |              |  |  |  |
| (b) expi                              | (b) expressing a surd in its simplest form.                                                            |                                                                                                 |                                                                   |              |  |  |  |
| 5. Where si                           | 5. Where sine rule or area of triangle formula is used award 0/3                                       |                                                                                                 |                                                                   |              |  |  |  |
| Commonly                              | Obse                                                                                                   | erved Responses:                                                                                |                                                                   |              |  |  |  |
| 1. $6^2 + 5^2 +$                      | 1. $6^2 + 5^2 + 2 \times 6 \times 5 \times \frac{1}{5} \rightarrow \sqrt{73}$ award 1/3 × $\sqrt{1}$ × |                                                                                                 |                                                                   |              |  |  |  |
| 2. (a) $\sqrt{6^2}$                   | + 5 <sup>2</sup> =                                                                                     | = $\sqrt{61}$                                                                                   | award 0/3                                                         |              |  |  |  |
| (b) $\sqrt{6^2}$                      | -5 <sup>2</sup> =                                                                                      | = \sqrt{11}                                                                                     | award 0/3                                                         |              |  |  |  |

| Q                       | uestic                                                                                                                                        | on                           | Generic scheme                                                                                       | Illustrative scheme                                                   | Max<br>mark |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|--|--|
| 7.                      | (a)                                                                                                                                           |                              | Method 1                                                                                             |                                                                       | 3           |  |  |
|                         |                                                                                                                                               |                              | • <sup>1</sup> calculate gradient                                                                    | • <sup>1</sup> 1500                                                   |             |  |  |
|                         |                                                                                                                                               |                              | • <sup>2</sup> substitute gradient and a point<br>into $y - b = m(x - a)$                            | • <sup>2</sup> eg $y$ – 20000 = 1500 ( $x$ – 5)                       |             |  |  |
|                         |                                                                                                                                               |                              | • <sup>3</sup> determine the equation of the line in terms of <i>P</i> and <i>T</i> in simplest form | • <sup>3</sup> $P = 1500T + 12500$                                    |             |  |  |
|                         |                                                                                                                                               |                              | Method 2                                                                                             |                                                                       |             |  |  |
|                         |                                                                                                                                               |                              | • <sup>1</sup> calculate gradient                                                                    | • <sup>1</sup> 1500                                                   |             |  |  |
|                         |                                                                                                                                               |                              | • <sup>2</sup> substitute gradient and a point<br>into $v = mx + c$                                  | • <sup>2</sup> eg 20000 = 1500 × 5 + $c$                              |             |  |  |
|                         |                                                                                                                                               |                              | • <sup>3</sup> determine the equation of the line in terms of <i>P</i> and <i>T</i> in simplest form | • <sup>3</sup> $P = 1500T + 12500$                                    |             |  |  |
| Note                    | s:                                                                                                                                            |                              |                                                                                                      |                                                                       |             |  |  |
| 1. Co                   | orrect                                                                                                                                        | answ                         | er without working                                                                                   | award 0/3                                                             |             |  |  |
| 2. Ad                   | cept                                                                                                                                          | 3000                         | ) – or equivalent for the award of $\bullet^1$ .                                                     |                                                                       |             |  |  |
| 3. ● <sup>1</sup><br>gr | is not<br>adien                                                                                                                               | z avail<br>t.                | able for using points other than (5, 20                                                              | 000), (15, 35 000) and (25, 50 000) to f                              | ind the     |  |  |
| 4. Fo                   | or an i                                                                                                                                       | ncorre                       | ect simplification of a gradient, a mark                                                             | is <b>not</b> awarded at the point where the                          | error       |  |  |
| 00                      | curs,                                                                                                                                         | eg                           |                                                                                                      | ·                                                                     |             |  |  |
| (a                      | $\frac{300}{20}$                                                                                                                              | $\frac{00}{0} = 1$           | $5000 \rightarrow y - 20000 = 15000(x-5) \rightarrow P =$                                            | $15000T - 55000$ award 2/3 × $\checkmark$                             | 1√1         |  |  |
| (b                      | $\frac{300}{20}$                                                                                                                              | $\frac{00}{1}$ $\rightarrow$ | $y - 20000 = 15000(x-5) \rightarrow P = 150007$                                                      | - 55000 award 2/3 √×                                                  | √1          |  |  |
| (c                      | (c) $\frac{30000}{20} \rightarrow y - 20000 = \frac{30000}{20} (x-5) \rightarrow P = 15000T - 55000$ award 2/3 $\checkmark \checkmark \times$ |                              |                                                                                                      |                                                                       |             |  |  |
| Com                     | monly                                                                                                                                         | 0bse                         | erved Responses:                                                                                     |                                                                       |             |  |  |
| Worl                    | king m                                                                                                                                        | nust b                       | e shown                                                                                              |                                                                       |             |  |  |
| 1. <i>1</i>             | $P = \frac{15}{1}$                                                                                                                            | $\frac{00}{1}T +$            | 12500                                                                                                | award 2/3 √√                                                          | ́х          |  |  |
| 2. 1                    | lsing (                                                                                                                                       | 1.2) a                       | nd (5.5); eg gradient = $\frac{3}{2} \rightarrow 2 = \frac{3}{2} \times 1 + \frac{3}{2}$             | $c \rightarrow P = \frac{3}{2}T + \frac{5}{2}$ award 2/3 × $\sqrt{2}$ | 1√1         |  |  |

2. Using (1,2) and (5,5): eg gradient =  $\frac{5}{4} \rightarrow 2 = \frac{5}{4} \times 1 + c \rightarrow P = \frac{5}{4}T + \frac{5}{4}$  award 2/3 ×  $\sqrt{1}\sqrt{1}$ 3. Using (5,20) and (25, 50): eg gradient =  $\frac{3}{2} \rightarrow 20 = \frac{3}{2} \times 5 + c \rightarrow P = \frac{3}{2}T + \frac{25}{2}$  award 2/3 ×  $\sqrt{1}\sqrt{1}$ 

| Question           |                                                                                                                                                     | on                        | Generic scheme                                                                                                                           | Illustrative scheme                                            | Max<br>mark |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------|--|--|--|
| 7.                 | (b)                                                                                                                                                 |                           | • <sup>4</sup> calculate salary                                                                                                          | • <sup>4</sup> (£)24,500                                       | 1           |  |  |  |
| Note               | s:                                                                                                                                                  |                           |                                                                                                                                          |                                                                |             |  |  |  |
| 1. Co              | onsiste                                                                                                                                             | ent an                    | swer without working (but see note 2)                                                                                                    | award 1/1                                                      |             |  |  |  |
| 2. W<br>(a         | <ol> <li>Where an incorrect answer in (a) is followed through, •<sup>4</sup> is not available where the answer is:</li> <li>(a) negative</li> </ol> |                           |                                                                                                                                          |                                                                |             |  |  |  |
| (                  | b) exp                                                                                                                                              | resse                     | d in fraction form eg $P = \frac{3}{4}T + \frac{5}{4} \rightarrow \frac{29}{4}$                                                          |                                                                |             |  |  |  |
| (0                 | c) give<br>P = '                                                                                                                                    | en to c<br>1.5 <i>T</i> - | one decimal place or more than two dec<br>+12.5 $\rightarrow$ 24.5                                                                       | cimal places                                                   |             |  |  |  |
| Com                | monly                                                                                                                                               | 0bse                      | erved Responses:                                                                                                                         |                                                                |             |  |  |  |
| 1. P               | $=\frac{3}{4}T$                                                                                                                                     | $+\frac{5}{4}$ i          | n (a) leading to (£) 7.25                                                                                                                | award 1/1                                                      |             |  |  |  |
| <b>2.</b> <i>P</i> | $=\frac{3}{2}T$                                                                                                                                     | $+\frac{25}{2}$           | in (a) leading to (£) 24.50                                                                                                              | award 1/1                                                      |             |  |  |  |
| 8.                 |                                                                                                                                                     |                           | <ul> <li><sup>1</sup> express as equivalent fraction with rational denominator</li> <li><sup>2</sup> express in simplest form</li> </ul> | • $^{1}\frac{12\sqrt{15}}{15}$<br>• $^{2}\frac{4\sqrt{15}}{5}$ | 2           |  |  |  |
| Note               | s:                                                                                                                                                  |                           |                                                                                                                                          |                                                                |             |  |  |  |
| 1. Co              | orrect                                                                                                                                              | answ                      | er without working                                                                                                                       | award 0/2                                                      |             |  |  |  |
| 2. Ao              | ccept                                                                                                                                               | 0.8√1                     | 5.                                                                                                                                       |                                                                |             |  |  |  |
| 3. Fo              | or subs                                                                                                                                             | seque                     | nt incorrect working, $\bullet^2$ is not available                                                                                       |                                                                |             |  |  |  |
| eg                 | eg $\frac{12\sqrt{15}}{15} = \frac{4\sqrt{15}}{5} = 4\sqrt{3}$ award $1/2 \checkmark \times$                                                        |                           |                                                                                                                                          |                                                                |             |  |  |  |
| Com                | Commonly Observed Responses:                                                                                                                        |                           |                                                                                                                                          |                                                                |             |  |  |  |
| 1. (a              | (a) $\frac{12}{3\sqrt{5}} = \frac{4}{\sqrt{5}} = \frac{4\sqrt{5}}{5}$ award $1/2 \cdot e^2 \times e^{1} \sqrt{1}$                                   |                           |                                                                                                                                          |                                                                |             |  |  |  |
| (t                 | c) <u>12</u><br>3√5                                                                                                                                 | _ = -<br>5                | $\frac{4}{\sqrt{5}}$                                                                                                                     | award 0/2                                                      |             |  |  |  |

| Question                 |                                                                                                                                                       | on                           | Generic scheme                                                                                             | Illustrative sch         | neme                        | Max<br>mark  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|--------------|
| 9.                       | (a)                                                                                                                                                   |                              | • <sup>1</sup> calculate median                                                                            | • <sup>1</sup> 39.5      |                             | 3            |
|                          |                                                                                                                                                       |                              | • <sup>2</sup> find quartiles                                                                              | • <sup>2</sup> 35 and 42 |                             |              |
|                          |                                                                                                                                                       |                              | • <sup>3</sup> calculate IQR                                                                               | • <sup>3</sup> 7         |                             |              |
| Note                     | s:                                                                                                                                                    | •                            |                                                                                                            |                          |                             |              |
| 1. (a<br>(b              | ) Corr<br>) Corr                                                                                                                                      | ect m<br>ect IC              | edian without working award • <sup>1</sup> .<br>R without working, do <b>not</b> award • <sup>2</sup> or   | • <sup>3</sup> .         |                             |              |
| 2. Ao                    | cept                                                                                                                                                  | quarti                       | les indicated in the list or on a diagram                                                                  | n for $\bullet^2$ .      |                             |              |
| 3. lf<br>(a<br>(b        | 'corre<br>) orde<br>) unor                                                                                                                            | ect' IQ<br>ered li<br>rderec | QR is found from an<br>st with one missing term or one extra n<br>I list [median = 38.5, IQR = 41 - 38 =3] | umber                    | award 2/3 ×v<br>award 1/3 × | ∕ 1√1<br>×√1 |
| <b>4.</b> ● <sup>2</sup> | and •                                                                                                                                                 | <sup>3</sup> are             | not available for finding the range ie 55                                                                  | 5 - 31 = 24.             |                             |              |
| 5. W<br>e                | here a<br><b>xplici</b> t                                                                                                                             | a cand<br>tly sta            | lidate has calculated SIQR= 3.5, • <sup>3</sup> can on the second steel "IQR = 7" eg                       | only be awarded where t  | he candidate h              | nas          |
| (a<br>(b                 | ) med<br>) med                                                                                                                                        | ian = 1<br>ian = 1           | 39.5, quartiles = 35 and 42, IQR = 7, SI<br>39.5, quartiles = 35 and 42 $\rightarrow$ (IQR =) 3            | QR = 3.5<br>3.5          | award 3/3<br>award 2/3 √√   | ´x           |
| 6. W<br>eg               | 6. Where a candidate has calculated the IQR but stated SIQR = 7, $\bullet^3$ is available eg median = 39.5, quartiles = 35 and 42, SIQR = 7 award 3/3 |                              |                                                                                                            |                          |                             |              |
| Com                      | Commonly Observed Responses:                                                                                                                          |                              |                                                                                                            |                          |                             |              |
|                          |                                                                                                                                                       |                              |                                                                                                            |                          |                             |              |

| Question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            | on                                                               | Generic scheme                                                                                                                                                                                                                    | Illustrative scheme                                                                                    | Max<br>mark |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|--|--|
| 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (b)                                                        |                                                                  | • <sup>4</sup> valid comment comparing medians                                                                                                                                                                                    | <ul> <li><sup>4</sup> eg on average the ages of the<br/>newspaper readers are higher</li> </ul>        | 2           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |                                                                  | <ul> <li>•<sup>5</sup> valid comment comparing IQRs</li> </ul>                                                                                                                                                                    | <ul> <li><sup>5</sup> eg ages of the newspaper<br/>readers are more varied</li> </ul>                  |             |  |  |
| Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s:                                                         |                                                                  |                                                                                                                                                                                                                                   |                                                                                                        |             |  |  |
| <ol> <li>Answers must be consistent with answers to part (a).</li> <li>eg If in part (a) the calculated median is 41 then award •<sup>4</sup> for 'on average the ages are the same for the newspaper and the magazine' or equivalent.</li> <li>If in part (a) the calculated IQR is 9 then award •<sup>5</sup> for 'the spread of ages is the same for the newspaper and the magazine' or equivalent.</li> </ol>                                                                                       |                                                            |                                                                  |                                                                                                                                                                                                                                   |                                                                                                        |             |  |  |
| 2. Co<br>re<br>(a<br>(b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | aders<br>Acce<br>Dor                                       | nts mi<br>ept eg<br>not ac                                       | ust involve reference to ages <b>and</b> includ<br>g On average the <b>newspaper readers' a</b><br>c <b>ept</b> eg On average the <b>ages</b> are highe                                                                           | de newspaper readers and/or magazine<br>ages are higher and less consistent.<br>r and less consistent. |             |  |  |
| 3. Fc<br>(a<br>(b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or the<br>) Acce<br>• Oi<br>) Do r<br>• Th<br>• Th<br>• Oi | aware<br>ept eg<br>n aver<br>not ac<br>ne me<br>ne age<br>n aver | d of • <sup>4</sup><br>rage the magazine readers are younger.<br>c <b>cept</b> eg<br>r <b>dian</b> age of the magazine readers is les<br>es of the newspaper readers are more (f<br>rage the newspaper readers' <b>results/sc</b> | s<br>this implies that all ages are more)<br>ores/data are higher.                                     |             |  |  |
| <ul> <li>4. For the award of •<sup>5</sup> <ul> <li>(a) Accept eg</li> <li>The spread of newspaper readers' ages is more.</li> <li>The magazine readers' ages are less varied.</li> </ul> </li> <li>(b) Do not accept eg <ul> <li>The IQR of the newspaper readers' ages is more.</li> <li>The range of the magazine readers' ages is less.</li> <li>On average the newspaper readers' ages are more varied.</li> <li>The IQR of the newspaper readers' ages is less consistent.</li> </ul> </li> </ul> |                                                            |                                                                  |                                                                                                                                                                                                                                   |                                                                                                        |             |  |  |
| Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | monly                                                      | / Obse                                                           | erved Responses:                                                                                                                                                                                                                  |                                                                                                        |             |  |  |

| Question |  | on | Generic scheme                                                                         | Illustrative scheme                            | Max<br>mark |
|----------|--|----|----------------------------------------------------------------------------------------|------------------------------------------------|-------------|
| 10.      |  |    | Method 1                                                                               | Method 1                                       | 4           |
|          |  |    | <ul> <li><sup>1</sup> marshal facts and recognise right<br/>angled triangle</li> </ul> | •1 30 50                                       |             |
|          |  |    | • <sup>2</sup> consistent Pythagoras statement                                         | $\bullet^2$ 50 <sup>2</sup> - 30 <sup>2</sup>  |             |
|          |  |    | • <sup>3</sup> calculate third side                                                    | • <sup>3</sup> 40                              |             |
|          |  |    | • <sup>4</sup> calculate width                                                         | • <sup>4</sup> 90                              |             |
|          |  |    | Method 2                                                                               | Method 2                                       |             |
|          |  |    | <ul> <li><sup>1</sup> marshal facts and recognise right<br/>angled triangle</li> </ul> | • <sup>1</sup><br>60                           |             |
|          |  |    | • <sup>2</sup> consistent Pythagoras statement                                         | $\bullet^2$ 100 <sup>2</sup> - 60 <sup>2</sup> |             |
|          |  |    | • <sup>3</sup> calculate third side                                                    | • <sup>3</sup> 80                              |             |
|          |  |    | • <sup>4</sup> calculate width                                                         | • <sup>4</sup> 90                              |             |

| Question                      |                                                                                                                                                                                                                                                            | Generic scheme                                                                                                             | Illustrative scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max<br>mark                     |  |  |  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| 10.                           | 10. (continued)                                                                                                                                                                                                                                            |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
| Note                          | es:                                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
| 1. C                          | orrect answe                                                                                                                                                                                                                                               | er without working                                                                                                         | award 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |  |  |  |  |  |  |
| 2. In                         | the absenc                                                                                                                                                                                                                                                 | e of a diagram accept 50² - 30² or 100²                                                                                    | - $60^2$ as evidence for the award of $\bullet^1$ a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd ●².                          |  |  |  |  |  |  |
| 3. B<br>W<br>in               | EWARE<br>'here a diagi<br>correct dia                                                                                                                                                                                                                      | ram is shown, working must be consiste<br>gram leading to 50² – 30² or 100² – 60².                                         | nt with the diagram; $ullet^2$ is not available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for an                          |  |  |  |  |  |  |
| 4. ● <sup>4</sup><br>in<br>eş | is only avai<br>the examp<br>g d = 100 -                                                                                                                                                                                                                   | lable following a Pythagoras calculation<br>les outlined in note 5<br>$\rightarrow 100 - 60 = 40 \rightarrow 40 + 50 = 90$ | n within a <b>valid</b> right-angled triangle ex<br>award 0/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cept                            |  |  |  |  |  |  |
| 5. W<br>aı<br>(a              | There a cand<br>ad $\bullet^3$ accept<br>30<br>30<br>40, since                                                                                                                                                                                             | lidate demonstrates recognition of 3,4,<br>50<br>0<br>3, 4, 5 triangle or Pythagorean triple.                              | 5 Pythagorean triple, for the award of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ▶ <sup>1</sup> , ● <sup>2</sup> |  |  |  |  |  |  |
| 6. W<br>av                    | here a cand<br>⁄ailable eg                                                                                                                                                                                                                                 | idate uses 60 and 50 or 50 and 50 withi                                                                                    | n a Pythagorean statement, $\bullet^1$ and $\bullet^4$ an | re not                          |  |  |  |  |  |  |
| (a<br>(t                      | <ul><li>consistent</li><li>no diagrar</li></ul>                                                                                                                                                                                                            | with their diagram: 60 <sup>2</sup> − 50 <sup>2</sup> → 10√11<br>n: 60 <sup>2</sup> − 50 <sup>2</sup> → 10√11 → 50+10√11   | $\rightarrow$ 50+10 $\sqrt{11}$ award 2/4 × $\checkmark$ award 1/4 ×× $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1√1×<br>√1×                     |  |  |  |  |  |  |
| 7. W<br>st                    | 7. Where a candidate's Pythagoras statement leads to an invalid solution, do not award $\bullet^3$ but $\bullet^4$ is still available eg $30^2 - 50^2 \rightarrow \sqrt{\pm 1600} \rightarrow 40 \rightarrow 90  \bullet^3 \times  \bullet^4 \checkmark 1$ |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
| Com                           | monly Obse                                                                                                                                                                                                                                                 | erved Responses:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |  |  |  |  |  |  |
| 1.4                           | 0 → 90                                                                                                                                                                                                                                                     |                                                                                                                            | award 0/4 ^^^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | √2                              |  |  |  |  |  |  |

| Question          |                                                                    | on                                           | Generic scheme                                                                  | Illustrative scheme                                                                                            | Max<br>mark |
|-------------------|--------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|
| 11.               |                                                                    |                                              | • <sup>1</sup> state value                                                      | • <sup>1</sup> -0.5                                                                                            | 1           |
| Note              | es:                                                                |                                              |                                                                                 |                                                                                                                |             |
| Com               | monl                                                               | y Obs                                        | served Responses:                                                               |                                                                                                                |             |
| 12.               |                                                                    |                                              | Method 1<br>•1 start to simplify (one correct<br>application of law of indices) | • $\frac{5c^{-2}}{c^7}$ or $\frac{5c^{-5}}{c^4}$ or $\frac{5c^{-6}}{c^3}$                                      | 3           |
|                   |                                                                    |                                              | • <sup>2</sup> complete simplification                                          | • <sup>2</sup> $5c^{-9}$                                                                                       |             |
|                   |                                                                    |                                              | • <sup>3</sup> express with a positive power                                    | • <sup>3</sup> $\frac{5}{c^9}$                                                                                 |             |
|                   |                                                                    |                                              | Method 2<br>•1 express with a positive power                                    | $\bullet^1 \frac{5}{c^3 \times c^4 \times c^2}$                                                                |             |
|                   |                                                                    |                                              | • <sup>2</sup> start to simplify (one correct application of law of indices)    | • <sup>2</sup> $\frac{5}{c^3 \times c^6}$ or $\frac{5}{c^7 \times c^2}$ stated or<br>implied by • <sup>3</sup> |             |
|                   |                                                                    |                                              | • <sup>3</sup> express with a positive power                                    | • <sup>3</sup> $\frac{5}{c^9}$                                                                                 |             |
| Note              | es:                                                                |                                              |                                                                                 |                                                                                                                |             |
| 1. Co             | orrect                                                             | t ansv                                       | ver without working                                                             | award 3/3                                                                                                      |             |
| Com               | monl                                                               | y Obs                                        | served Responses:                                                               |                                                                                                                |             |
| 1 50              | $\frac{c^{-2}}{c^{7}}$ -                                           | → 5 <i>c</i> <sup>-</sup>                    | $^9 \rightarrow \frac{1}{5c^9}$                                                 | award 2/3 √√×                                                                                                  |             |
| 2. (a             | $\frac{5c^{-}}{c^{7}}$                                             | $\xrightarrow{2} \rightarrow$                | $5c^{-5} \rightarrow \frac{5}{c^5}$                                             | award 2/3 √×√                                                                                                  | 1           |
| (b                | $\frac{5c^{-}}{c^{7}}$                                             | $\rightarrow$                                | $\frac{5}{c^5}$                                                                 | award 1/3 √××                                                                                                  |             |
| 3. $\frac{5a}{c}$ | $\frac{c^{-2}}{c^{-2}} \left( -\frac{c^{-2}}{c^{-2}} \right)^{-2}$ | $\rightarrow 5c$                             | $^{-14}) \rightarrow \frac{5}{c^{14}}$                                          | award 2/3 ×1                                                                                                   | 1           |
| 4. (a             | $\frac{5c^{-12}}{c^{12}}$                                          | $\xrightarrow{2}{}$                          | $5c^{-10} \rightarrow \frac{5}{c^{10}}$                                         | award 1/3 ××√                                                                                                  | 1           |
| (b                | $\frac{5c}{c^{12}}$                                                | $\xrightarrow{2}{2} \rightarrow \frac{1}{2}$ | $\frac{5}{c^{10}}$                                                              | award 0/3                                                                                                      |             |

| Question |                                            | n       | Generic scheme                    | Illustrative scheme                  | Max<br>mark |  |  |  |  |  |
|----------|--------------------------------------------|---------|-----------------------------------|--------------------------------------|-------------|--|--|--|--|--|
| 13.      | (a)                                        |         | • <sup>1</sup> state value of $a$ | • <sup>1</sup> -30 or 330            | 1           |  |  |  |  |  |
| Notes    | Notes:                                     |         |                                   |                                      |             |  |  |  |  |  |
| 1. Foi   | <i>y</i> = 0                               | cos(x   | <i>c</i> −30)+                    | award 1/1                            |             |  |  |  |  |  |
| 2. Foi   | ca = 1                                     | l in (a | a) and $b=-30$ in (b)             | award 0/1 in (a) and award 1/1 in (I | b)√1        |  |  |  |  |  |
| Comn     | nonly                                      | Obse    | erved Responses:                  |                                      |             |  |  |  |  |  |
|          |                                            |         |                                   |                                      |             |  |  |  |  |  |
|          | (b)                                        |         | $\bullet^2$ state value of $b$    | • <sup>2</sup> 1                     | 1           |  |  |  |  |  |
| Notes    | :                                          |         |                                   |                                      |             |  |  |  |  |  |
| 1. Fc    | or <i>y</i> =                              | cos(    | $x \pm) + 1$                      | award 1/1                            |             |  |  |  |  |  |
| 2. Fc    | 2. For $a = 1$ in (a) and $b = -30$ in (b) |         |                                   | award 0/1 in (a) and award 1/1 in (I | b)√1        |  |  |  |  |  |
| Comn     | Commonly Observed Responses:               |         |                                   |                                      |             |  |  |  |  |  |
|          |                                            |         |                                   |                                      |             |  |  |  |  |  |

| Question |  | n | Generic scheme                                                                                              | Illustrative scheme                                | Max<br>mark |
|----------|--|---|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------|
| 14.      |  |   | Method 1                                                                                                    | Method 1                                           | 3           |
|          |  |   | • <sup>1</sup> eliminate denominators                                                                       | • $5(x+1)-30 > 9x$ or equivalent                   |             |
|          |  |   | • <sup>2</sup> rearrange into the form $ax > b$ or $b > ax$                                                 | • <sup>2</sup> $-4x > 25$ or $-25 > 4x$            |             |
|          |  |   | • <sup>3</sup> solve for $x$                                                                                | • $x < -\frac{25}{4}$ or $-\frac{25}{4} > x$       |             |
|          |  |   | Method 2                                                                                                    | Method 2                                           |             |
|          |  |   | <ul> <li><sup>1</sup> collect algebraic terms and<br/>express as a fraction in simplest<br/>form</li> </ul> | • <sup>1</sup> $\frac{5-4x}{15}$ > 2 or equivalent |             |
|          |  |   | • <sup>2</sup> rearrange into the form $ax > b$ or $b > ax$                                                 | • <sup>2</sup> $-4x > 25$ or $-25 > 4x$            |             |
|          |  |   | • <sup>3</sup> solve for $x$                                                                                | • $x < -\frac{25}{4}$ or $-\frac{25}{4} > x$       |             |
|          |  |   | Method 3                                                                                                    | Method 3                                           |             |
|          |  |   | <ul> <li>express left hand side as a<br/>fraction in simplest form</li> </ul>                               | • $\frac{x-5}{3} > \frac{3x}{5}$ or equivalent     |             |
|          |  |   | • <sup>2</sup> rearrange into the form $ax > b$ or $b > ax$                                                 | • <sup>2</sup> $-4x > 25$ or $-25 > 4x$            |             |
|          |  |   | • <sup>3</sup> solve for $x$                                                                                | • $x < -\frac{25}{4}$ or $-\frac{25}{4} > x$       |             |

| Question                                       | Generic scheme                                                                                                            | Illustrative scheme                                     | Max<br>mark |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|--|--|--|--|--|
| 14. (continued)                                |                                                                                                                           |                                                         |             |  |  |  |  |  |
| Notes:                                         |                                                                                                                           |                                                         |             |  |  |  |  |  |
| 1. Correct answer<br>Treat repeate             | 1. Correct answer without working award 0/3<br>Treat repeated substitution as invalid working.                            |                                                         |             |  |  |  |  |  |
| 2. For the award                               | d of $\bullet^3$ accept eg $x < -6\frac{1}{4}$ , $-6.25 > x$ ,                                                            | $x < \frac{25}{-4}$                                     |             |  |  |  |  |  |
| 3. For the award                               | d of $\bullet^3$ the answer must be a non-intege                                                                          | r value.                                                |             |  |  |  |  |  |
| Do not award                                   | • <sup>3</sup> for a decimal approximation of $-\frac{25}{4}$                                                             | , but do not penalise incorrect conver                  | sion to     |  |  |  |  |  |
| a mixed num                                    | per or decimal approximation following                                                                                    | an answer of $-\frac{25}{4}$                            |             |  |  |  |  |  |
| (a) $5(x+1)-$                                  | $-30 > 9x \rightarrow -4x > 25 \rightarrow x < -\frac{25}{4} \rightarrow x < -6$                                          | 6.3 award 3/3                                           |             |  |  |  |  |  |
| (b) $5(x+1)-$                                  | $-30 > 9x \rightarrow -4x > 25 \rightarrow x < -6.3$                                                                      | award 2/3 √√                                            | x           |  |  |  |  |  |
| 4. (a) There mu<br>of <i>x</i> on th<br>(i) re | ust be evidence that the candidate has<br>ne LHS of the inequation by either:<br>eversing the direction of the inequality | dealt with the negative coefficient sign at $\bullet^3$ |             |  |  |  |  |  |
| e                                              | g $5(x+1)-30 > 9x \rightarrow -4x > 25 \rightarrow x < -4x$                                                               | 4 award 3/3                                             |             |  |  |  |  |  |
| OR                                             |                                                                                                                           |                                                         |             |  |  |  |  |  |
| (ii) co                                        | collecting the $x$ term(s) on the RHS of the                                                                              | e inequation at $\bullet^2$                             |             |  |  |  |  |  |
| e                                              | g $5(x+1)-30 > 9x \rightarrow -25 > 4x \rightarrow -\frac{23}{4} >$                                                       | award 3/3                                               |             |  |  |  |  |  |
| (b) Where a                                    | candidate requires to do neither of the                                                                                   | above, then $\bullet^3$ does not gain a mark            |             |  |  |  |  |  |
| eg 5 $(x+$                                     | $1) - 30 > 9x \rightarrow 4x > 25 \rightarrow x > \frac{25}{4}$                                                           | award 1/3√×                                             | √2          |  |  |  |  |  |
| 5. For subseque                                | ent incorrect working $\bullet^3$ is not available                                                                        |                                                         |             |  |  |  |  |  |
| $eg -\frac{25}{4} > x$                         | $\rightarrow x > -\frac{25}{4}$                                                                                           | award 2/3 √√                                            | ´χ          |  |  |  |  |  |
| Commonly Obse                                  | erved Responses:                                                                                                          |                                                         |             |  |  |  |  |  |
| 1. $5(x+1)-2 > 9$                              | 1. $5(x+1)-2 > 9x \rightarrow -4x > -3 \rightarrow x < \frac{3}{4}$ award 2/3 × $\sqrt{1}\sqrt{1}$                        |                                                         |             |  |  |  |  |  |
| 2. (a) $5(x+1)-3$                              | $30 = 9x \rightarrow -4x = 25 \rightarrow x = -\frac{25}{4} \rightarrow x < -\frac{25}{4}$                                | 2 <u>5</u><br>4 award 3/3                               |             |  |  |  |  |  |
| (b) $5(x+1)-3$                                 | $30 = 9x \rightarrow -4x = 25 \rightarrow x = -\frac{25}{4}$                                                              | award 2/3 √√                                            | ́х          |  |  |  |  |  |

#### [END OF MARKING INSTRUCTIONS]



### 2023 Mathematics

## Paper 2

### National 5

# **Finalised Marking Instructions**

 $\ensuremath{\mathbb{C}}$  Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.



#### Marking Instructions for each question

| Q                                                                        | uestic                       | on                       | Generic Scheme                                                                                                                                      | Illustrative Scheme                                                                   | Max<br>Mark |
|--------------------------------------------------------------------------|------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------|
| 1.                                                                       |                              |                          | • <sup>1</sup> know how to decrease by $44\%$ and $6\%$                                                                                             | • <sup>1</sup> × 0.89 and × 0.94                                                      | 3           |
|                                                                          |                              |                          | 11% and 6%                                                                                                                                          | • <sup>2</sup> 20 000 × 0.89 × 0.94 <sup>2</sup>                                      |             |
|                                                                          |                              |                          | <ul> <li>know how to calculate value<br/>of caravan</li> </ul>                                                                                      |                                                                                       |             |
|                                                                          |                              |                          |                                                                                                                                                     | • <sup>3</sup> (£) 15,728.08                                                          |             |
| Noto                                                                     |                              |                          | • evaluate                                                                                                                                          |                                                                                       |             |
| 1. Co                                                                    | orrect                       | ansv                     | ver without working                                                                                                                                 | award 3/3                                                                             |             |
| 2. Ac                                                                    | cept 1                       | 15 72                    | 28 or 15 728.10. However, do not a                                                                                                                  | ccept 15 728.1                                                                        |             |
| 3. Di                                                                    | sregar                       | d ro                     | unding subsequent to correct answ                                                                                                                   | er.                                                                                   |             |
| 4. W                                                                     | here ii<br>ossibili          | ncor<br>ty of            | rect percentages are used, the wor<br>f awarding 2/3.                                                                                               | king must be followed through to give the                                             |             |
| 5. W<br>e                                                                | here a<br>g 20 00            | i sing<br>00 ×           | gle repeated percentage change is 0.83 <sup>3</sup> = 11435.74                                                                                      | applied, $\bullet^1$ and $\bullet^2$ are not available<br>award 1/3 ×× $\checkmark$ 1 |             |
| 6. W<br>(a<br>(t                                                         | here d<br>a) alon<br>o) alon | livisi<br>Ig wi<br>Ig wi | on is used:<br>ith 0.89 <b>and</b> 0.94 <sup>2</sup> • <sup>1</sup> is not availabl<br>ith incorrect percentage • <sup>1</sup> and • <sup>2</sup> a | le.<br>re not available.                                                              |             |
| Com                                                                      | monly                        | Obs                      | erved Responses:                                                                                                                                    |                                                                                       |             |
| 1. 20                                                                    | 000 ×                        | 0.8                      | 9 × 0.94 = 16732                                                                                                                                    | award 2/3 √×√1                                                                        |             |
| 2. (a                                                                    | ) 20 00                      | )0 ×                     | $0.89 \times 0.83^2 = 12\ 262.42$                                                                                                                   | award 2/3 ×√1√1                                                                       |             |
| (b                                                                       | ) 20 00                      | )0 ×                     | 0.89 × 0.83 × 0.77 = 11 375.98                                                                                                                      | award 2/3 ×√1√1                                                                       |             |
| 3. 20                                                                    | 000 ×                        | 0.1                      | 1 × 0.06 <sup>2</sup> = 792                                                                                                                         | award 2/3 ×√1√1                                                                       |             |
| 4. 20                                                                    | 000 ×                        | 1.1                      | 1 × 1.06 <sup>2</sup> = 24 943.92                                                                                                                   | award 2/3 ×√1√1                                                                       |             |
| 5. (a                                                                    | ) 20 00                      | )0 ×                     | 0.83 <sup>3</sup> = 11 435.74                                                                                                                       | award 1/3 ××√1                                                                        |             |
| (b) $20\ 000 \times 0.83^2 = 13\ 778$ award $1/3 \times \times \sqrt{1}$ |                              |                          |                                                                                                                                                     |                                                                                       |             |
| 6. (a                                                                    | ) 20 00                      | )0 ×                     | 0.77 <sup>3</sup> = 9130.66                                                                                                                         | award 1/3 ××√1                                                                        |             |
| (b                                                                       | ) 20 00                      | )0 ×                     | 0.77 <sup>2</sup> = 11 858                                                                                                                          | award 1/3 ××√1                                                                        |             |
| 7. 20                                                                    | 000 ×                        | 0.8                      | 9 × (1 - 0.06 × 2) = 15 664                                                                                                                         | award $1/3 \sqrt{x} \sqrt{2}$                                                         |             |
|                                                                          |                              |                          |                                                                                                                                                     |                                                                                       |             |

| Question |                                                                                                                             | ion                          | Generic scheme                                                                                           | Illustrative scheme                                     | Max<br>mark |
|----------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------|
| 2.       |                                                                                                                             |                              | • <sup>1</sup> correct method                                                                            | • <sup>1</sup> 300 ÷ (6.64 × 10 <sup>-24</sup> )        | 3           |
|          |                                                                                                                             |                              | • <sup>2</sup> evaluate                                                                                  | • <sup>2</sup> 4.51(8) × 10 <sup>25</sup> or equivalent |             |
|          |                                                                                                                             |                              | <ul> <li><sup>3</sup> express in scientific notation<br/>rounded to 3 significant<br/>figures</li> </ul> | • <sup>3</sup> 4.52 × $10^{25}$                         |             |
| Not      | tes:                                                                                                                        |                              |                                                                                                          |                                                         |             |
| 1.       | Correc                                                                                                                      | t ans                        | wer without working                                                                                      | award 3/3                                               |             |
| 2.       | (a) Foi                                                                                                                     | r the                        | award of $\bullet^1$ accept 300 ÷ 6.64 × 10                                                              | )-24                                                    |             |
| 3.       | (b) Ho                                                                                                                      | weve                         | r, <b>BEWARE</b> of incorrect use of calc                                                                | ulator using power button                               |             |
|          | 300                                                                                                                         | )÷6.                         | $64 \times 10^{-24} = 4.51(8) \times 10^{-23} = 4.52$                                                    | × $10^{-23}$ award $2/3 \sqrt{x}$                       | √1          |
| 4.       | lf "×10<br>3 signi                                                                                                          | )" is o<br>fican             | mitted at $\bullet^2$ , the final mark is avail t figures with consistent power                          | lable for rounding to                                   |             |
|          | eg 300                                                                                                                      | )÷(6                         | $64 \times 10^{-24} \rightarrow 4.51 (8)^{25} \rightarrow 4.52^{25}$                                     | award 2/3 √×                                            | <b>√1</b>   |
| Со       | nmonl                                                                                                                       | y Obs                        | served Responses:                                                                                        |                                                         |             |
| Bra      | (6.64 ×                                                                                                                     | 10t re<br>× 10 <sup>-2</sup> | equired $(4^{4}) \div 300 = 2.21 (3) \times 10^{-26}$                                                    | award 2/3 ×√                                            | 1√1         |
| 2.       | (6.64 :                                                                                                                     | × 10 <sup>-2</sup>           | <sup>4</sup> ) × 300 = 1.992 × 10 <sup>-21</sup> = 1.99 × 10 <sup>-</sup>                                | <sup>21</sup> award 2/3 ×√                              | 1√1         |
| 3.       | 300 ÷ $(6.64 \times 10^{-24}) \rightarrow 4.51(8) \times 10^{25} \rightarrow 4.52$ award 2/3 $\checkmark \checkmark \times$ |                              |                                                                                                          |                                                         |             |
| 4.       | (a) 30                                                                                                                      | 00 ÷ (                       | $6.64 \times 10^{-24} \rightarrow 4.51 (8)^{25} \rightarrow 4.52^{2}$                                    | 5 award 2/3 √×                                          | <b>√</b> 1  |
|          | (b) (6                                                                                                                      | 5.64×                        | $10^{-24}$ ) × 300 = 1.992 <sup>-21</sup> = 1.99 <sup>-21</sup>                                          | award 1/3 ××                                            | √1          |

| Question         |                             | tion                            | Generic scheme                                                                                 | Illustrative sch                                                                   | eme          | Max<br>mark   |
|------------------|-----------------------------|---------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|---------------|
| 3.               |                             |                                 | Method 1                                                                                       | Method 1                                                                           |              | 3             |
|                  |                             |                                 | • <sup>1</sup> appropriate fraction                                                            | • <sup>1</sup> $\frac{106}{360}$                                                   |              |               |
|                  |                             |                                 | • <sup>2</sup> consistent substitution into arc<br>length formula (must involve a<br>fraction) | $\bullet^2 \frac{106}{360} \times 2 \times \pi \times 9.15$                        |              |               |
|                  |                             |                                 | • <sup>3</sup> calculate arc length                                                            | • <sup>3</sup> 16.9(27) or 17 (m)                                                  |              |               |
|                  |                             |                                 | Method 2                                                                                       | Method 2                                                                           |              |               |
|                  |                             |                                 | • <sup>1</sup> appropriate fraction                                                            | • $\frac{106}{360}$                                                                |              |               |
|                  |                             |                                 | • <sup>2</sup> consistent substitution into arc length ratio                                   | $\bullet^2  \frac{106}{360} = \frac{\operatorname{arc}}{2 \times \pi \times 9.15}$ |              |               |
|                  |                             |                                 | • <sup>3</sup> calculate arc length                                                            | • <sup>3</sup> 16.9(27) or 17 (m)                                                  |              |               |
| Note             | es:                         |                                 |                                                                                                |                                                                                    |              |               |
| 1. C             | orrect<br>o not             | t answ<br>penali                | er without working<br>se variations in $\pi$ .                                                 |                                                                                    | award 0/3    |               |
| e                | $\frac{10}{36}$             | $\frac{16}{50} \times 2 \times$ | 3.14×9.15=16.9(19)                                                                             |                                                                                    | award 3/3    |               |
| 3. P             | remat                       | ure ro                          | unding: rounded working must be to at                                                          | least 2 significant figure                                                         | S            |               |
| eg               | (a)                         | $\frac{106}{360} \times 2$      | $2 \times \pi \times 9.15 = 0.29$ $2 \times \pi \times 9.45$ $16.6(7)$                         | ,16.7 or 17                                                                        | award 3/3    |               |
|                  | (b)                         | $\frac{106}{360} \times 2$      | $2 \times \pi \times 9.15 = 0.3$ & $\pi$ 9.15 $47(.24)$                                        |                                                                                    | award 2/3    | (√x           |
| 4. A             | ccept                       | <b>2</b> ×π×                    | $\times 9.15 - \frac{254}{360} \times 2 \times \pi \times 9.15 = 16.9(27)$ or                  | 17                                                                                 | award 3/3    |               |
| 5. Fo            | or sub                      | seque                           | nt incorrect working, $ullet^3$ is not available                                               |                                                                                    |              |               |
| eg               | g 2×                        | π×9.1                           | $5 - \frac{106}{360} \times 2 \times \pi \times 9.15 = 40.5(6)$ or 41                          |                                                                                    | award 2/3    | /√x           |
| Com              | monl                        | y Obse                          | erved Responses:                                                                               |                                                                                    |              |               |
| 1. $\frac{1}{3}$ | $\frac{06}{60} \times \tau$ | t×9.15                          | =8(.46)                                                                                        |                                                                                    | award 2/3 √× | :√1           |
| 2. $\frac{1}{3}$ | $\frac{06}{60} \times 2$    | π× <b>9.1</b>                   | $5^2 = 77(.44)$                                                                                |                                                                                    | award 2/3 √× | :√1           |
| 3. $\frac{2}{3}$ | 2 <u>54</u><br>60           | 2×π×9                           | 9.15 = 41  or  40(.56)                                                                         |                                                                                    | award 2/3 ×√ | ´1 <b>√</b> 1 |
| 4. $\frac{2}{3}$ | 254<br>60 × 2               | π× <b>9.1</b>                   | 5 = 20(.28)                                                                                    |                                                                                    | award 1/3 ×  | ×√1           |
| 5. $\frac{2}{3}$ | 254<br>860 × 2              | π× <b>9</b> .1!                 | $5^2 = 186 \text{ or } 185(.57)$                                                               |                                                                                    | award 1/3 ×× | √1            |
| 6. 2             | 2×π×                        | 9.15 =                          | = 57(.49)                                                                                      |                                                                                    | award 0/3    |               |

| C          | Questio                      | on                           | Generic Scheme                                                       | Illustrative scheme                                                                  | Max<br>mark |
|------------|------------------------------|------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|
| 4.         |                              |                              | • <sup>1</sup> correct substitution into sine rule                   | • $\frac{\sin K}{10} = \frac{\sin 25}{7}$ or $\frac{10}{\sin K} = \frac{7}{\sin 25}$ | 3           |
|            |                              |                              | • <sup>2</sup> rearrange equation                                    | $\bullet^2  \sin K = \frac{10 \sin 25}{7}$                                           |             |
|            |                              |                              | • <sup>3</sup> calculate angle JKL                                   | • <sup>3</sup> 37 (.1)                                                               |             |
| Note       | es:                          |                              |                                                                      |                                                                                      |             |
| 1. C       | orrect                       | ansv                         | ver without working                                                  | award 0/3                                                                            |             |
| 2. D       | o not p                      | oena                         | lise omission of degrees sign.                                       |                                                                                      |             |
| 3. D<br>e  | isregar<br>g                 | rd pr                        | emature rounding provided the fina                                   | al answer can be rounded to 37.                                                      |             |
| (2         | a) sink                      | $\zeta = \frac{1}{2}$        | $\frac{0\sin 25}{7}  0.6 \to 36.869$                                 | award 3/3                                                                            |             |
| (t         | o) sin⊭                      | $\zeta = \frac{1}{2}$        | $\frac{0\sin 25}{7}  \frac{10 \times 0.4}{7} \Longrightarrow 34.849$ | award 2/3                                                                            | √√×         |
| 4. W       | /here c                      | cosin                        | e rule or area of triangle formula is                                | s used award 0/3                                                                     |             |
| 5. lr<br>( | appro<br>(a) 36(             | priat<br>( <b>.8</b>         | e use of GRAD or RAD should only b<br>) (GRAD)                       | pe penalised once in Qu's 4, 8, 11 or 15                                             |             |
| (          | b) Hov                       | weve                         | r, where RAD is used, $\frac{10\sin 25}{7} = -$                      | –0.190…, so •³ is unavailable                                                        |             |
| Com        | monly                        | v Obs                        | erved Responses:                                                     |                                                                                      |             |
| 1. –       | K<br>in 10                   | 25<br>sin                    | $\frac{1}{7}  K = \frac{25 \sin 10}{\sin 7}  35.6$                   | award 1/3 x                                                                          | د√1√2       |
| 2          | $\frac{10}{\sin K} =$        | $\frac{7}{\sin 2}$           | $\frac{7 \times 10}{10} = \frac{165.6}{\sin 25}$                     | award 1/3                                                                            | ⁄ x x       |
| 3.         | $\frac{10}{K} = \frac{7}{2}$ | 7<br>25                      | $K = \frac{25 \times 10}{7}$ 35.71                                   | award 0/3 x                                                                          | ≪√2√2       |
| 4. (a      | a) $\frac{10}{\sin^2}$       | $\frac{1}{K} = -\frac{1}{S}$ | $\frac{7}{\sin 25} \xrightarrow{10 \sin 25} 37(.1)$                  | award 3/3                                                                            |             |
| (t         | $\frac{10}{\sin k}$          | $\frac{1}{s} = \frac{1}{s}$  | $\frac{7}{\ln 25}  K \xrightarrow{10 \sin 25}_{=}  37 (.1)$          | award 3/3                                                                            |             |
| (0         | $\frac{10}{\sin k}$          | $\frac{1}{s} = \frac{1}{s}$  | $\frac{7}{\ln 25}  K \xrightarrow{7 \sin 25}_{10}  17 (.2)$          | award 2/3                                                                            | ∕×√1        |
| (0         | $\frac{10}{\sin k}$          | $\frac{1}{s} = \frac{1}{s}$  | $\frac{7}{\ln 25}  K \xrightarrow{10 \sin 25}{7}  0.6(03.)$          | award 1/3                                                                            | (xx         |

| C                 | )uesti                                                                                                 | ion                                           | Generic Ssheme                                                                                                                                       | Illustrative scheme                                                                          | Max<br>mark |
|-------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|
| 5.                |                                                                                                        |                                               | • <sup>1</sup> calculate size of interior or exterior angle of the decagon                                                                           | <ul> <li><sup>1</sup> interior angle = 144<br/>or exterior angle = 36</li> </ul>             | 2           |
|                   |                                                                                                        |                                               | • <sup>2</sup> calculate size of shaded angle                                                                                                        | • <sup>2</sup> 126                                                                           |             |
| Note              | es:                                                                                                    |                                               |                                                                                                                                                      |                                                                                              |             |
| 1. C              | orrect                                                                                                 | t ansv                                        | ver without relevant working                                                                                                                         | award 0/2                                                                                    |             |
| 2. D              | egree                                                                                                  | s sign                                        | s are not required.                                                                                                                                  |                                                                                              |             |
| 3. Fi             | ull ma                                                                                                 | arks n                                        | nay be awarded for information ma                                                                                                                    | rked on the diagram.                                                                         |             |
| 4. Fo<br>(a<br>(b | or the<br>) the<br>outv<br>) acc<br>sam                                                                | e awai<br>exte<br>with t<br>cept 7<br>ne tria | rd of • <sup>1</sup><br>rior angle of 36 must be clearly inc<br>the diagram as "exterior angle = 36<br>72 + 72 or two 72 angles marked on<br>angle). | licated on the diagram or explicitly state<br>".<br>the diagram (either adjacent or within t | ed<br>:he   |
| 5. • <sup>2</sup> | is on                                                                                                  | ly ava                                        | ailable where the exterior angle is a                                                                                                                | acute and consistent with working at $ullet^1$                                               |             |
| e                 | eg ang                                                                                                 | gles ir                                       | n triangle 40, 70, 70 (indicated on c                                                                                                                | liagram) $\rightarrow$ exterior angle 40                                                     |             |
| -                 | →sha                                                                                                   | ded a                                         | angle = 130                                                                                                                                          | award 1/2                                                                                    | <b>×</b> √1 |
| 6. V              | Vhere<br>'exter                                                                                        | the o                                         | exterior angle is <b>not</b> indicated on d<br>ngle = 36", for: 90 + 36 = 126                                                                        | iagram or explicitly stated as<br>award 1/2                                                  | ^ √1        |
| 7. A              | ccept                                                                                                  | clear                                         | r working outwith the diagram, but                                                                                                                   | the final answer must be clearly indicate                                                    | ed.         |
| Com               | monly                                                                                                  | y Obs                                         | served Responses:                                                                                                                                    |                                                                                              |             |
| 1. (a             | 1. (a) $90 + (180 - 72 - 72) = 126$ award $2/2$ (b) $90 + (360 - 90 - 90 - 72 - 72) = 126$ award $2/2$ |                                               |                                                                                                                                                      |                                                                                              |             |
| 2. Aı             | $ \begin{array}{l} \text{ngles} \\ \rightarrow & \text{sh} \end{array} $                               | in tria<br>aded                               | angle 36, 72, 72 (indicated on diagr<br>angle = 108                                                                                                  | ram) $\rightarrow$ exterior angle 18 award 1/2                                               | √ <b>x</b>  |

| Question                                  |                  | on                         | Generic scheme                                                                   | Illustrative scheme                       | Max<br>mark |
|-------------------------------------------|------------------|----------------------------|----------------------------------------------------------------------------------|-------------------------------------------|-------------|
| 6.                                        |                  |                            | • <sup>1</sup> evidence that 108% is 94500                                       | • <sup>1</sup> 108% = 94 500              | 3           |
|                                           |                  |                            | • <sup>2</sup> start valid strategy                                              | • <sup>2</sup> 1% = $\frac{94\ 500}{108}$ |             |
|                                           |                  |                            | <ul> <li><sup>3</sup> complete calculation within a valid strategy</li> </ul>    | • <sup>3</sup> (£) 87,500                 |             |
| Note                                      | s:               |                            |                                                                                  |                                           |             |
| 1. Co                                     | orrect           | t ansv                     | ver without working                                                              | award 3/3                                 |             |
| 2. (a<br>(b                               | ) 108<br>) 8% (  | 5% = 9<br>of 94            | $P4 500 \rightarrow 8\% \text{ of } 94500 = 7560$<br>500 = 7560                  | award 1/3 √<br>award 0/3                  | ´x x        |
| 3. (a<br>(b                               | ) 108<br>) 108   | % = 9<br>% of <sup>•</sup> | $94\ 500 \rightarrow 108\% \text{ of } 94500 = 102\ 060$<br>$94\ 500 = 102\ 060$ | award 1/3 √<br>award 0/3                  | ´x x        |
| 4. (a                                     | ) 108            | s% = 9                     | $94500 \rightarrow 92\%$ of 94 500 = 86940                                       | award 1/3 √                               | xx          |
| (b                                        | ) 92%            | of 9                       | 4 500 = 86 940                                                                   | award 0/3                                 |             |
| Com                                       | monl             | y Obs                      | served Responses:                                                                |                                           |             |
| 1. $\frac{94500}{1.08} = 87500$ award 3/3 |                  |                            |                                                                                  |                                           |             |
| 2. 1                                      | % = <del>9</del> | 4500<br>92                 | ·→102 717(.39)                                                                   | award 2/3 ×                               | √1√1        |

| Question                                                                                                              |                                                                                                                           | on                | Generic scheme                                                                             | Illustrative scheme                                                   | Max<br>mark |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|
| 7.                                                                                                                    |                                                                                                                           |                   | Method 1                                                                                   | Method 1                                                              | 3           |
|                                                                                                                       |                                                                                                                           |                   | • <sup>1</sup> add $r$                                                                     | $\bullet^1 P + r = \frac{1}{3}mn$                                     |             |
|                                                                                                                       |                                                                                                                           |                   | • <sup>2</sup> multiply by 3                                                               | $\bullet^2 mn = 3(P + r)$                                             |             |
|                                                                                                                       |                                                                                                                           |                   | • <sup>3</sup> divide by $n$                                                               | • <sup>3</sup> $m = \frac{3(P+r)}{n}$ or equivalent                   |             |
|                                                                                                                       |                                                                                                                           |                   | Method 2                                                                                   | Method 2                                                              |             |
|                                                                                                                       |                                                                                                                           |                   | • <sup>1</sup> multiply by 3                                                               | • <sup>1</sup> $3P = mn - 3r$                                         |             |
|                                                                                                                       |                                                                                                                           |                   | • <sup>2</sup> add $3r$                                                                    | • <sup>2</sup> $mn = 3P + 3r$                                         |             |
|                                                                                                                       |                                                                                                                           |                   | • <sup>3</sup> divide by $n$                                                               | • <sup>3</sup> $m = \frac{3P + 3r}{n}$ or equivalent                  |             |
| Note                                                                                                                  | es:                                                                                                                       |                   |                                                                                            |                                                                       |             |
| 1. C                                                                                                                  | orrect                                                                                                                    | t ansv            | wer without working                                                                        | award 0/3                                                             |             |
| 2. Fo                                                                                                                 | or sub                                                                                                                    | sequ              | ent incorrect working, •³ is not availa                                                    | ble.                                                                  |             |
| Com                                                                                                                   | monl                                                                                                                      | y Obs             | served Responses:                                                                          | _                                                                     |             |
| 1. (a                                                                                                                 | a) P+                                                                                                                     | $r = \frac{1}{3}$ | $\frac{1}{3}mn \xrightarrow{P+r} n \xrightarrow{1}{3}m \xrightarrow{p+r} 3 c$              | or $m = 3\frac{P+r}{n}$ award 3/3                                     |             |
| (t                                                                                                                    | <b>)</b> P+                                                                                                               | $r = \frac{1}{3}$ | $\frac{1}{3}mn  \xrightarrow{P+r}{n}  \frac{1}{3}m  m \xrightarrow{P+r}{n}  3 \rightarrow$ | $m \times \frac{3(P+r)}{3n}$ award 2/3 $\checkmark \checkmark \times$ | :           |
| (c) $P+r = \frac{1}{3}mn \xrightarrow{P+r}{n} \frac{1}{3}m \xrightarrow{m} \frac{P+r}{1}$ award $2/3 \sqrt{\sqrt{2}}$ |                                                                                                                           |                   |                                                                                            |                                                                       | <b>2</b>    |
| 2. (a                                                                                                                 | 2. (a) $P + r = \frac{1}{3}mn  \exists P  r + m \Rightarrow  \frac{3P + r}{n}$ award $2/3 \checkmark \times \checkmark 1$ |                   |                                                                                            |                                                                       |             |
| (t                                                                                                                    | o) 3P                                                                                                                     | = mn              | $r \rightarrow mn  \exists P  r + m \rightarrow \frac{\exists P + r}{n}$                   | award 2/3 ×√1                                                         | √1          |
| 3. F                                                                                                                  | $r = \frac{1}{3}$                                                                                                         | mn                | $\rightarrow 3Pr = mn + m = \frac{3Pr}{n}$                                                 | award 1/3 ×√2                                                         | √1          |

| Q  | uestio | n | Generic scheme                              | Illustrative scheme                                              | Max<br>mark |
|----|--------|---|---------------------------------------------|------------------------------------------------------------------|-------------|
| 8. |        |   | Method 1                                    | Method 1                                                         | 4           |
|    |        |   | • <sup>1</sup> valid strategy               | • <sup>1</sup> $4^2$ + $7^2$ and $8^2$                           |             |
|    |        |   | • <sup>2</sup> evaluation                   | • <sup>2</sup> $4^2 + 7^2 = 65$ and $8^2 = 64$                   |             |
|    |        |   | • <sup>3</sup> explicit comparison          | • ${}^{3}$ 4 <sup>2</sup> + 7 <sup>2</sup> $\neq$ 8 <sup>2</sup> |             |
|    |        |   | • <sup>4</sup> conclusion with valid reason | $ullet^4$ No, as angle is not a right angle                      |             |
|    |        |   | Method 2                                    | Method 2                                                         |             |
|    |        |   | • <sup>1</sup> valid strategy               | • $4^2 + 7^2 = 65$                                               |             |
|    |        |   | • <sup>2</sup> evaluation                   | • <sup>2</sup> $\sqrt{65} = 8.06$                                |             |
|    |        |   | • <sup>3</sup> explicit comparison          | • <sup>3</sup> 8 ≠ 8.06                                          |             |
|    |        |   | $ullet^4$ conclusion with valid reason      | $\bullet^4$ No, as angle is not a right angle                    |             |
|    |        |   | Method 3                                    | Method 3                                                         |             |
|    |        |   | • <sup>1</sup> valid strategy               | • $(\cos x =) \frac{4^2 + 7^2 - 8^2}{2 \times 4 \times 7}$       |             |
|    |        |   | • <sup>2</sup> evaluate $\cos x$            | • <sup>2</sup> $(\cos x =)\frac{1}{56}$                          |             |
|    |        |   | • <sup>3</sup> calculate angle              | • <sup>3</sup> 88(.97)                                           |             |
|    |        |   | • <sup>4</sup> conclusion with valid reason | $\bullet^4$ No, as angle is not a right angle                    |             |

| Question                                                                                                                | Generic scheme                                                                                                                                                                                                                                                                                                        | Illustrative sch                 | neme         | Max<br>mark  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|--------------|--|--|
| 8. (continued)                                                                                                          |                                                                                                                                                                                                                                                                                                                       |                                  |              |              |  |  |
| Notes:                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |                                  |              |              |  |  |
| 1. • <sup>1</sup> is not avai<br>$4^{2} + 7^{2} = 8^{2}$<br>65 ≠ 64<br>No, as angle is                                  | 1. • <sup>1</sup> is not available where a candidate starts by stating that $4^2 + 7^2 = 8^2$ or $4^2 + 7^2 \neq 8^2$<br>$4^2 + 7^2 = 8^2$ or $4^2 + 7^2 \neq 8^2$ x•1<br>$65 \neq 64$ $\sqrt{\bullet^2} \sqrt{\bullet^3}$<br>No, as angle is not a right angle $\sqrt{\bullet^4}$ award $3/4 \times \sqrt{\sqrt{4}}$ |                                  |              |              |  |  |
| 2. There must be                                                                                                        | e an explicit comparison stated for the                                                                                                                                                                                                                                                                               | award of $\bullet^3$             |              |              |  |  |
| 3. For the award<br>(a) $\sqrt{65} \neq \sqrt{64}$<br>(b) $\sqrt{65} \neq 8$<br>(c) $a^2 + b^2 \neq c^2$<br>(d) 65 > 64 | 3. For the award of $\bullet^3$ accept eg<br>(a) $\sqrt{65} \neq \sqrt{64}$<br>(b) $\sqrt{65} \neq 8$<br>(c) $a^2 + b^2 \neq c^2$ or AC <sup>2</sup> + CB <sup>2</sup> $\neq$ AB <sup>2</sup> (labelling consistent with diagram)<br>(d) 65 > 64                                                                      |                                  |              |              |  |  |
| 4. The conclusio                                                                                                        | n must include reference to 90° or a rig                                                                                                                                                                                                                                                                              | ht angle.                        |              |              |  |  |
| 5. Inappropriate<br>(a) 1.55 (R.<br>(b) 98 (.86)                                                                        | e use of RAD or GRAD should only be per<br>AD), no, as angle is not a right angle<br>(GRAD), no, as angle is not a right ang                                                                                                                                                                                          | nalised once in Qu 4, 8, 1<br>le | 11 or 15     |              |  |  |
| Commonly Obse                                                                                                           | erved Responses:                                                                                                                                                                                                                                                                                                      |                                  |              |              |  |  |
| 1. (a) $4^2 + 7^2 =$                                                                                                    | $= 65 \rightarrow 8.06 = 8; 8 = \rightarrow \text{ yes, as angle}$                                                                                                                                                                                                                                                    | is a right angle                 | award 3/4 √√ | ∕×√1         |  |  |
| (b) $4^2 + 7^2 =$                                                                                                       | $65 \rightarrow 8$ ; 8 8 $\rightarrow$ yes, as angle is a right                                                                                                                                                                                                                                                       | t angle                          | award 3/4 √× | <b>√1</b> √1 |  |  |
| 2. If triangle is right angle                                                                                           | right-angled then $4^2 + 7^2 = 8^2 \rightarrow 65 \neq 6$                                                                                                                                                                                                                                                             | 4;No, as angle is not a          | award 4/4    |              |  |  |
| 3. (a) $4^2 + 8^2$ and (b) $4^2 + 8^2 = 7$                                                                              | 3. (a) $4^2 + 8^2$ and $7^2 \rightarrow 80$ , $49 \rightarrow 80 \neq 49 \rightarrow$ no, as angle is not a right angle<br>(b) $4^2 + 8^2 = 7^2 \rightarrow 80$ , $49 \rightarrow 80 \neq 49 \rightarrow$ no, as angle is not a right angle<br>award $3/4 \times \sqrt{1} \sqrt{1} \sqrt{1}$                          |                                  |              |              |  |  |
| 4. (a) $\frac{4^2 + 7^2 - 7^2}{2 \times 4 \times 7^2}$ right ang                                                        | $\frac{8^2}{7} = \frac{1}{56} = 0.017()$ or $\mathfrak{C}$ $0.0 \neq 7()$                                                                                                                                                                                                                                             | no, as angle is not a            | award 3/4 √√ | ´×√1         |  |  |
| (b) $\frac{4^2 + 7^2}{2 \times 4 \times 7^2}$                                                                           | $\frac{8^2}{7} = \frac{1}{56} = 0.017()$ no, as angle is n                                                                                                                                                                                                                                                            | ot a right angle                 | award 2/4 √√ | ^x           |  |  |

| Question                                                                                                                                               |                                                                                                                                                                    | on                | Generic scheme                                                                                                                                                                                | Illustrative scheme                                                                                                                                                                 | Max<br>mark |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 9.                                                                                                                                                     |                                                                                                                                                                    |                   | • <sup>1</sup> correct substitution into formula for volume of small pyramid                                                                                                                  | • <sup>1</sup> $\frac{1}{3} \times 40 \times 40 \times 48$ (= 25600)                                                                                                                | 4           |
|                                                                                                                                                        |                                                                                                                                                                    |                   | <ul> <li><sup>2</sup> consistent substitution into<br/>formula for volume of large pyramid</li> <li><sup>3</sup> know to subtract volume of small<br/>pyramid from volume of large</li> </ul> | • <sup>2</sup> $\frac{1}{3} \times 90 \times 90 \times 108 \ (= 291600)$<br>• <sup>3</sup> $\frac{1}{3} \times 90 \times 90 \times 108 - \frac{1}{3} \times 40 \times 40 \times 48$ |             |
|                                                                                                                                                        |                                                                                                                                                                    |                   | <ul> <li>pyramid</li> <li><sup>4</sup> all calculations correct (must involve sum or difference of two different calculations both involving a fraction) and state correct units</li> </ul>   | • <sup>4</sup> 266 000 cm <sup>3</sup>                                                                                                                                              |             |
| Note                                                                                                                                                   | s:                                                                                                                                                                 |                   |                                                                                                                                                                                               |                                                                                                                                                                                     |             |
| 1. Co                                                                                                                                                  | orrect                                                                                                                                                             | answ              | er without working $(22)^3$                                                                                                                                                                   | award 0/4                                                                                                                                                                           |             |
| 2. ● <sup>2</sup>                                                                                                                                      | is ava                                                                                                                                                             | ailable           | e for eg $\left(\frac{90}{40}\right)^2 \times 25600$                                                                                                                                          |                                                                                                                                                                                     |             |
| 3. W                                                                                                                                                   | here a                                                                                                                                                             | a cano            | lidate substitutes 60 for the height of t                                                                                                                                                     | he larger pyramid, $ullet^2$ is not available eq                                                                                                                                    | 3           |
| (a                                                                                                                                                     | $\frac{1}{3} \times 9$                                                                                                                                             | 90×10             | $18 - \frac{1}{3} \times 40 \times 48 = 2600 \text{ cm}^3$                                                                                                                                    | award 3/4 ×√1                                                                                                                                                                       | √√1         |
| (b                                                                                                                                                     | $\frac{1}{3} \times 9$                                                                                                                                             | 90×60             | $0 - \frac{1}{3} \times 40 \times 48 = 1160 \text{ cm}^3$                                                                                                                                     | award 2/4 ××v                                                                                                                                                                       | ∕√1         |
| Com                                                                                                                                                    | nonly                                                                                                                                                              | / Obse            | erved Responses:                                                                                                                                                                              |                                                                                                                                                                                     |             |
| 1. $\frac{1}{3}$                                                                                                                                       | ×90>                                                                                                                                                               | < 90 × 0          | $60 - \frac{1}{3} \times 40 \times 40 \times 48 = 136\ 400\ \text{cm}^3$                                                                                                                      | award 3/4 🗸 🗙                                                                                                                                                                       | ∕√1         |
| 2. $\frac{1}{3}$                                                                                                                                       | ×90>                                                                                                                                                               | < <b>90</b> ×1    | $108 + \frac{1}{3} \times 40 \times 40 \times 48 = 317\ 200\ \text{cm}^3$                                                                                                                     | award 3/4 √√                                                                                                                                                                        | ×√1         |
| 3. (a                                                                                                                                                  | $\frac{1}{3} \times 9$                                                                                                                                             | 90×10             | $8 \times 108 - \frac{1}{3} \times 40 \times 48 \times 48 = 319\ 200\ \text{cm}^3$                                                                                                            | award 3/4 ×√                                                                                                                                                                        | l√√1        |
| (b                                                                                                                                                     | (b) $\frac{1}{3} \times 90 \times 60 \times 60 - \frac{1}{3} \times 40 \times 48 \times 48 = 77280$ cm <sup>3</sup> award 2/4 ××√√1                                |                   |                                                                                                                                                                                               |                                                                                                                                                                                     |             |
| 4. (a                                                                                                                                                  | 4. (a) $\frac{1}{3} \times \pi \times 90^2 \times 108 - \frac{1}{3} \times \pi \times 40^2 \times 48 (= 266000)$ 835663(.6) cm <sup>3</sup> award 3/4 × $\sqrt{1}$ |                   |                                                                                                                                                                                               |                                                                                                                                                                                     |             |
| (b) $\frac{1}{3} \times \pi \times 90^2 \times 60 - \frac{1}{3} \times \pi \times 40^2 \times 48 (= 136400)$ 428 §13(.2) cm <sup>3</sup> award 2/4 ××√ |                                                                                                                                                                    |                   |                                                                                                                                                                                               | ∕√1                                                                                                                                                                                 |             |
| (c)                                                                                                                                                    | $\frac{1}{3} \times \pi$                                                                                                                                           | τ×45²             | $4 \times 108 - \frac{1}{3} \times \pi \times 20^2 \times 48 (= 66500)$ 208                                                                                                                   | ⊭915(.9) cm <sup>3</sup> award 3/4 ×√                                                                                                                                               | l√√1        |
| (d                                                                                                                                                     | $\frac{1}{3} \times 2$                                                                                                                                             | π×45 <sup>2</sup> | $x^2 \times 60 - \frac{1}{3} \times \pi \times 20^2 \times 48 (= 34100)$ 107=                                                                                                                 | 128(.3) cm <sup>3</sup> award 2/4 ××v                                                                                                                                               | ∕√1         |

| Question                                | Generic scheme                                                                                         | Illustrative scheme                            | Max<br>mark         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------|
| 10.                                     | • <sup>1</sup> correct denominator                                                                     | • <sup>1</sup> $\frac{\cdots}{x(x-3)}$         | 3                   |
|                                         | • <sup>2</sup> correct numerator                                                                       | $\bullet^2 \frac{7x-2(x-3)}{\cdots}$           |                     |
|                                         | • <sup>3</sup> remove brackets and collect like terms in numerator                                     | $\bullet^3 \frac{5x+6}{x(x-3)}$                |                     |
| Notes:<br>1. Correct answ               | wer without working                                                                                    | award 3/3                                      |                     |
| 2. Accept $\frac{7}{x(x)}$              | $\left(\frac{x}{-3}\right) - \frac{2(x-3)}{x(x-3)}$ for the award of $\bullet^1$ and                   | • <sup>2</sup>                                 |                     |
| 3. Do <b>not</b> acce                   | ppt $\frac{7x}{x-3} - \frac{2(x-3)}{x}$ for the award of $\bullet^2$                                   |                                                |                     |
| 4. Where a car<br>available fo          | ndidate chooses to expand the bracke<br>r a correct expansion eg                                       | ets in the denominator, then $ullet^3$ is only | 1                   |
| (a) $\frac{5x+6}{x(x-3)}$               | $\left(\frac{5}{3}\right) = \frac{5x+6}{x^2-3x}$                                                       | award 3/3                                      |                     |
| (b) $\frac{5x+6}{x(x-3)}$               | $\frac{6}{3} = \frac{5x+6}{x^2-3}$                                                                     | award 2/3 √√                                   | ×                   |
| (c) $\frac{7x}{x^2-3}$                  | $-\frac{2(x-3)}{x^2-3} = \frac{5x+6}{x^2-3}$                                                           | award 2/3 × 🗸                                  | ′1√1                |
| 5. For subsequed eg $\frac{7x}{x(x-3)}$ | ent incorrect working do not award •<br>$\frac{2(x-3)}{x(x-3)} = \frac{5x+6}{x(x-3)} = \frac{11}{x-3}$ | <sup>3</sup> award 2/3 √√                      | <ul><li>x</li></ul> |
| Commonly Obs                            | served Responses:                                                                                      |                                                |                     |
| 1. $\frac{7x}{x(x-3)} - \frac{1}{x}$    | $\frac{x(x-3)}{x(x-3)} = \frac{3x-3}{x(x-3)}$                                                          | award 2/3 √√                                   | ´ x                 |
| $2.  \frac{7x-2x-3}{x(x-3)}$            | $\frac{-6}{x(x-3)} = \frac{5x-6}{x(x-3)}$                                                              | award 2/3 √×                                   | :√1                 |
| $3.  \frac{7x}{x(x-3)} - \frac{1}{x}$   | $\frac{2x-3}{x(x-3)} = \frac{5x \pm 3}{x(x-3)}$                                                        | award 1/3 √×                                   | : ×                 |

| Question          |                                                                                                                                                                                      | n                        | Generic                               | scheme                            | Illustrative scheme                    | Max<br>mark |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------|-----------------------------------|----------------------------------------|-------------|
| 11.               |                                                                                                                                                                                      |                          | • <sup>1</sup> substitute $h = 1$     | 50 into formula                   | • <sup>1</sup> 150 = 20 $cos x$ + 147  | 4           |
|                   |                                                                                                                                                                                      |                          | • <sup>2</sup> rearrange equa         | tion                              | • <sup>2</sup> $\cos x = \frac{3}{20}$ |             |
|                   |                                                                                                                                                                                      |                          | • <sup>3</sup> calculate one v        | alue of <i>x</i>                  | • <sup>3</sup> 81                      |             |
|                   |                                                                                                                                                                                      |                          | • <sup>4</sup> calculate secon        | d value of <i>x</i>               | • <sup>4</sup> 279                     |             |
| Note              | s:                                                                                                                                                                                   |                          |                                       |                                   |                                        |             |
| 1. Co<br>(a<br>(b | orrect<br>) with<br>) by re                                                                                                                                                          | answo<br>out w<br>epeate | ers<br>orking<br>ed substitution      |                                   | award 1/4 ××√2<br>award 1/4 ××√2       | √<br>√      |
| 2. De             | egree                                                                                                                                                                                | signs                    | are not required                      |                                   |                                        |             |
| 3. If             | $\cos x$                                                                                                                                                                             | < 0 th                   | en $\bullet^3$ and $\bullet^4$ are on | ly available for cons             | istent 2nd and 3rd quadrant angles eg  |             |
| (a                | ) 15 <del>0</del> :                                                                                                                                                                  | = <del>2</del> 0 c       | $\cos x  147 \rightarrow \cos x$      | $\frac{3}{20} \rightarrow 99,261$ | award 3/4 √×√                          | l√1         |
| (b                | (b) $147 = 20 \cos x$ $450 \to \cos x$ $\frac{3}{20} \to 99,261$ award $3/4 \times \sqrt{1} \sqrt{1} \sqrt{1}$                                                                       |                          |                                       |                                   |                                        | ∕1√1        |
| 4. Do             | o not p                                                                                                                                                                              | penali                   | se incorrect roundi                   | ng provided given ar              | nswers round to 81 and 279.            |             |
| 5. W              | here r                                                                                                                                                                               | nore t                   | than two <b>final</b> value           | es are stated, $\bullet^4$ is n   | ot available                           |             |
| e                 | eg 150 = $20 \cos x$ 147 $\rightarrow \cos x$ $\frac{3}{20} \rightarrow 81$ , 99, 279 award $3/4 \sqrt{\sqrt{x}}$                                                                    |                          |                                       |                                   |                                        | ×           |
| 6. In<br>(a<br>(b | <ul> <li>6. Inappropriate use of RAD or GRAD should only be penalised once in Qu 4, 8, 11 or 15</li> <li>(a) 1.4(202), 358.579 [RAD]</li> <li>(b) 90(.41), 269.585 [GRAD]</li> </ul> |                          |                                       |                                   |                                        |             |
| Com               | monly                                                                                                                                                                                | Obse                     | erved Responses:                      |                                   |                                        |             |
| 1. (a<br>(b       | ) 20 c<br>) 20 c                                                                                                                                                                     | os 15<br>os 15           | 0 + 147 = 130<br>0 + 147 = 130, 230   |                                   | award 0/4<br>award 1/4 ××××            | <b>√</b> 1  |

| Question                                                                                                    |                              | on    | Generic scheme                                   | Illustrative scheme              | Max<br>mark |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------|-------|--------------------------------------------------|----------------------------------|-------------|--|--|
| 12.                                                                                                         |                              |       | • <sup>1</sup> factorise numerator               | • <sup>1</sup> $(x - 4) (x + 4)$ | 3           |  |  |
|                                                                                                             |                              |       | • <sup>2</sup> factorise denominator             | • <sup>2</sup> $(x + 5) (x - 4)$ |             |  |  |
|                                                                                                             |                              |       | • <sup>3</sup> cancel brackets correctly         | $\bullet^3  \frac{x+4}{x+5}$     |             |  |  |
| Note                                                                                                        | es:                          |       |                                                  |                                  |             |  |  |
| 1. Co                                                                                                       | orrect                       | answ  | ver without working                              | award 0/3                        |             |  |  |
| 2. Fo                                                                                                       | or sub                       | seque | ent incorrect working $\bullet^3$ is not availab | ble                              |             |  |  |
| eg $\frac{(x-4)(x+4)}{(x+5)(x-4)} = \frac{x+4}{x+5} + \frac{4}{5}$ award 2/3 $\checkmark \checkmark \times$ |                              |       |                                                  |                                  |             |  |  |
| Com                                                                                                         | Commonly Observed Responses: |       |                                                  |                                  |             |  |  |

| Question                 |                                                          | on                         | Generic scheme                                        | Illustrative scheme                                                                  | Max<br>Mark |
|--------------------------|----------------------------------------------------------|----------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------|
| 13.                      |                                                          |                            | Method 1                                              | Method 1                                                                             | 2           |
|                          |                                                          |                            | • <sup>1</sup> factorise                              | • $1 2(\sin^2 x + \cos^2 x)$                                                         |             |
|                          |                                                          |                            | • <sup>2</sup> substitute and simplify                | •2 2                                                                                 |             |
|                          |                                                          |                            | Method 2                                              | Method 2                                                                             |             |
|                          |                                                          |                            | •1 expand                                             | • $\sin^2 x + \cos^2 x + \sin^2 x + \cos^2 x$                                        |             |
|                          |                                                          |                            | •² substitute and simplify                            | •2 2                                                                                 |             |
|                          |                                                          |                            | Method 3                                              | Method 3                                                                             |             |
|                          |                                                          |                            | • <sup>1</sup> substitute                             | • 1 $2(1 - \cos^2 x) + 2\cos^2 x$ or<br>$2\sin^2 x + 2(1-\sin^2 x)$                  |             |
|                          |                                                          |                            | • <sup>2</sup> expand and simplify                    | • $^{2} 2 - 2\cos^{2} x + 2\cos^{2} x = 2$ or<br>$2\sin^{2} x + 2 - 2\sin^{2} x = 2$ |             |
| Note                     | es:                                                      |                            |                                                       |                                                                                      |             |
| 1. Co                    | orrect                                                   | answ                       | ver without working                                   | award 0/2                                                                            |             |
| 2. Do                    | o not                                                    | penal                      | ise omission of degrees signs.                        |                                                                                      |             |
| 3. Fo                    | or 2(si                                                  | in <i>x</i> <sup>2</sup> + | $-\cos x^2$ ) = 2                                     | award 1/2                                                                            | ×√1         |
| <b>4.</b> ● <sup>1</sup> | is no                                                    | t avai                     | lable if there are no variables eg 2(si               | $in^2 + cos^2$ ) = 2 award 1/2                                                       | x√          |
| Com                      | monly                                                    | y Obs                      | erved Responses:                                      |                                                                                      |             |
| 1. (a                    | ) sir                                                    | $x^{2}x^{+}$               | $\cos^2 x = 1 \rightarrow 2\sin^2 x  2\cos^2 x  2$    | award 2/2                                                                            |             |
| (b                       | ) 2s                                                     | $\sin^2 x$                 | $+2\cos^2 x = 2 \rightarrow \sin^2 x  \cos \neq x  1$ | award 0/2                                                                            |             |
| 2. (a                    | ) sin                                                    | $x^{2}x + s^{2}$           | $\sin^2 x + \cos^2 x + \cos^2 x = 1 + 1 = 2$          | award 2/2                                                                            |             |
| (b                       | ) sin                                                    | $x^{2}x + c$               | $\cos^2 x + 1 = 1 + 1 = 2$                            | award 2/2                                                                            |             |
| (c                       | ) sin                                                    | $^{2}x \times s$           | $\sin^2 x + \cos^2 x \times \cos^2 x = 1 + 1 = 2$     | award 0/2                                                                            |             |
| 3. s                     | 3. $\sin^2 x + \cos^2 x = 1 \rightarrow 2$ 1 2 award 2/2 |                            |                                                       |                                                                                      |             |
| 4. s                     | 4. $\sin^2 x + \cos^2 x = 1$ award 0/2                   |                            |                                                       |                                                                                      |             |

| Question   |                                                                                                                                                                                    | ion    | Generic scheme                                                                       | Illustrative scheme                       | Max<br>mark |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------|-------------------------------------------|-------------|--|
| 14.        | (a)                                                                                                                                                                                |        | • <sup>1</sup> use the dimensions of the cuboid to find an expression for the volume | • $(x+7) \times x \times 2$ or equivalent | 2           |  |
|            |                                                                                                                                                                                    |        | • <sup>2</sup> construct equation and rearrange                                      | $2x^2 + 14x =$                            |             |  |
|            |                                                                                                                                                                                    |        | into required form                                                                   | $45 \Longrightarrow 2x^2 + 14x - 45 = 0$  |             |  |
| Note       | s:                                                                                                                                                                                 |        |                                                                                      |                                           |             |  |
| 1. Co      | orrect                                                                                                                                                                             | t ansv | ver without working                                                                  | award 0/2                                 |             |  |
| 2. If      | 2. If solution to part (a) appears in (b) then both marks are available.                                                                                                           |        |                                                                                      |                                           |             |  |
| 3. F<br>(a | <ul> <li>3. For the award of •<sup>1</sup></li> <li>(a) accept x+7×x×2 with further evidence of (x + 7)×x×2</li> <li>(b) do not accept x+7×x×2 with no further evidence</li> </ul> |        |                                                                                      |                                           |             |  |
| Com        | Commonly Observed Responses:                                                                                                                                                       |        |                                                                                      |                                           |             |  |
| 1. 2       | 1. $2x^2 + 14x - 45 = 0 \Rightarrow 2x(x + 7) + 45$ award 0/2                                                                                                                      |        |                                                                                      |                                           |             |  |

| Question |     | on | Generic scheme                                                                                                                                                                                                                   | Illustrative scheme                                                                                                                                                                       | Max<br>mark |
|----------|-----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 14.      | (b) |    | <ul> <li><sup>3</sup> correct substitution into quadratic formula</li> <li><sup>4</sup> evaluate discriminant</li> <li><sup>5</sup> solve for x</li> <li><sup>6</sup> select correct value of x, to one decimal place</li> </ul> | • <sup>3</sup> $\frac{-14 \pm \sqrt{(14)^2 - 4(2)(-45)}}{2(2)}$<br>• <sup>4</sup> 556 (stated or implied by • <sup>5</sup> )<br>• <sup>5</sup> 2.39(4) and -9.39(4)<br>• <sup>6</sup> 2.4 | 4           |

Notes:

1. Correct answer without working

award 0/4

award 0/4

2. For a solution obtained by guess and check

3. •<sup>4</sup> is available for  $\frac{-7 \pm \sqrt{139}}{2}$ 

4. •<sup>5</sup> is only available when 
$$b^2 - 4ac > 0$$

5.  $\bullet^6$  is only available when the positive root is selected and it requires rounding.

- 6. If solution to part (b) appears in (a) then all four marks are available. However, if a different value of x is stated in (b) then  $\bullet^6$  is not available. General marking principle (l) should not be applied in this special case.
- 7. For:

(a) 
$$\frac{-14 + \sqrt{(14)^2 - 4(2)(-45)}}{2(2)} \rightarrow 2.4$$

award 2/4 √√××

(b)  $\frac{-14 + \sqrt{(14)^2 - 4(2)(-45)}}{2(2)} \rightarrow 2.4$ ; with explicit justification of why second root has not been calculated eg 2<sup>nd</sup> substitution leads to a negative solution award 4/4

| Question                              | Generic scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Illustrative scheme                                                              | Max<br>mark                |  |  |  |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| 14. (continued)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                            |  |  |  |  |  |  |
| Commonly O                            | Commonly Observed Responses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                            |  |  |  |  |  |  |
| 1. 556 ( <i>b</i> <sup>2</sup> - 4    | ac)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | award 1                                                                          | /4 ^√^^                    |  |  |  |  |  |  |
| 2. $\frac{-14 \pm \sqrt{(1-1)^2}}{2}$ | $\frac{\overline{4)^2 - 4(2)(-45)}}{2(2)} \left( \rightarrow \frac{-14 \pm \sqrt{-164}}{2(2)} \right) \rightarrow \frac{-14 \pm \sqrt{-164}}{2(2)} \rightarrow -14 \pm$ | $\frac{-14 \pm \sqrt{164}}{2(2)} \rightarrow -0.29(8), -6.70($                   | 1…)<br>/4 √×××             |  |  |  |  |  |  |
| 3. $\frac{-14\pm\sqrt{(1-1)^2}}{2}$   | $\frac{\overline{4)^2 - 4(2)(45)}}{2(2)} \rightarrow \frac{-14 \pm \sqrt{-164}}{2(2)} \left( \rightarrow \frac{-14}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\left(\frac{1}{2} \pm \sqrt{164}\right) \rightarrow -0.29(8), -6.70(2)$ award 1 | /4 v ×××<br>I)<br>/4 ×√1×× |  |  |  |  |  |  |
| 4. $\frac{-14\pm\sqrt{(1-1)^2}}{2}$   | $\frac{\overline{4)^2 - 4(2)(45)}}{2(2)} \to \frac{-14 \pm \sqrt{164}}{2(2)} \to -0.29$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8), -6.70(1) award 1                                                            | /4 ××√1×                   |  |  |  |  |  |  |
| 5. (a)-14±-                           | $\frac{\sqrt{(14)^2 - 4(2)(-45)}}{2(2)} \to -14 \pm \frac{\sqrt{556}}{2(2)} \to 2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39(4), −9.39(4)→2.4<br>award 4                                                   | /4                         |  |  |  |  |  |  |
| (b)-14±-                              | $\frac{\sqrt{(14)^2 - 4(2)(-45)}}{2(2)} \to -14 \pm \frac{\sqrt{556}}{2(2)} \to -8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.10(5), −19.89(4)<br>award 2                                                    | 2/4 ×√√1×                  |  |  |  |  |  |  |
| $6.  \frac{-14\pm\sqrt{(1-1)^2}}{2}$  | $\frac{\overline{4)^2 - 4(2)(-45)}}{2(2)} \to \frac{-14 \pm \sqrt{556}}{2(2)} \to -8.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D(5), -19.89(4) award 2                                                          | ./4 √√××                   |  |  |  |  |  |  |

| Question |  | n | Generic scheme                                                            | Illustrative scheme                                                                                   | Max<br>mark |
|----------|--|---|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------|
| 15.      |  |   | • <sup>1</sup> correct trig. ratio                                        | • <sup>1</sup> $\sin A = \frac{8}{18}$ or equivalent                                                  | 4           |
|          |  |   | • <sup>2</sup> correct substitution into formula for area of triangle ADE | • <sup>2</sup> $\frac{1}{2} \times 24 \times AE \times \sin A$<br>stated or implied by • <sup>3</sup> |             |
|          |  |   | • <sup>3</sup> form equation                                              | $\bullet^3  \frac{1}{2} \times 24 \times AE \times \frac{8}{18} = 160$                                |             |
|          |  |   | • <sup>4</sup> solve to find length of AE                                 | • <sup>4</sup> 30 (cm)                                                                                |             |

Notes: award 0/4 1. Correct answer without working 2. For the award of  $\bullet^1$  accept  $\sin A = \frac{8 \sin 90}{18}$  or A = 26 (.38...) using a valid strategy involving a trigonometric calculation 3. Premature rounding must be to at least 2 significant figures eg (a)  $\frac{1}{2} \times 24 \times AE \times \sin 26 = 160 -30 (.41...)$ award 4/4 (b)  $\frac{1}{2} \times 24 \times AE \times \frac{8}{18} = 160 - 5.3 \times AE = 160 - 30(.18...)$ award 4/4 (c)  $\frac{1}{2} \times 24 \times AE \times 0.4 = 160 - 4.8 AE = 460 - 33(.33...)$ award  $3/4 \sqrt{\sqrt{2}}$ 4. Do not penalise incorrect rounding in the final answer 5. For subsequent incorrect working, the final mark is not available 6. Where candidate estimates the size of angle BAC,  $\bullet^3$  is only available if the angle is acute (a)  $\frac{1}{2} \times 24 \times AE \times \sin 30 = 160 -26.6(6...)$ award 2/4 ××√1√1 (b)  $\frac{1}{2} \times 24 \times AE \times \sin 90 = 160 - 43.3(3...)$ award 1/4 ×××√1 7. Alternative method (similarity): •  $e^1 eg \frac{24}{18}$ •<sup>1</sup> identify scale factor •<sup>2</sup> find height of triangle ADE •<sup>2</sup>  $\frac{32}{3}$ •  $\frac{1}{2} \times AE \times \frac{32}{3} = 160$  $\bullet^3$  form equation •<sup>4</sup> solve to find length of AE •<sup>4</sup> 30 (cm) Commonly Observed Responses: 1. (a)  $\sqrt{18^2 - 8^2} = 16(.12...)$ award 0/4 (b)  $\sqrt{18^2 - 8^2} = 16(.12...) \rightarrow \frac{1}{2} \times 24 \times AE \times \sin 16 = 160 \rightarrow 48(.37...)$ award 2/4 ××√1√1

#### [END OF MARKING INSTRUCTIONS]